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Abstract

As Deep Learning and NLP models advance they also become more complicated
and computationally heavy. This limits the ability of developers to use these mod-
els at the edge on phones and low power devices. In this paper, we introduce a new
CNN architecture which can be trained by a distillation process from a large-scale
model such as OpenAl’s Transformer architecture. This student model is then
small enough and fast enough to be run on phones. The model can then achieve
300x inference speedup and 39x reduction in parameter count and in some cases,
the student model’s performance surpasses its teacher on the studied tasks.

1 Introduction

The last year has seen several major advances in NLP modelling, stemming from previous innova-
tions in embeddings [1] [2] and attention models [3] that allow Language Models (LMs) to be trained
on very large corpuses : For instance ELMo [4], OpenAl Transformer [5] and recently BERT [6].
In addition, the power of building on LM-enhanced contextualised embeddings, using a fine-tuning
approach on task-specific unlabelled data [7], has shown huge benefits for downstream tasks (such
as text classification) - especially in a typical industrial setting where labelled data is scarce.

In order to make use of these advances for phones and devices, this work shows how a model
distillation process [8] can be used to train a novel ‘student’” CNN structure from a much larger
‘teacher’ Language Model. The teacher model can be fine-tuned on the specific task at hand, using
both unlabelled data, and the (small number of) labelled training examples available. The student
network can then be trained using both labelled and unlabelled data, in a process akin to pseudo-
labelling [9] [10]. Our results show it is possible to achieve similar performance to (and surpass
in some cases) large attention-based models with a novel, highly efficient student model with only
convolutional layers. This reduced model is then able to be used efficiently on mobile devices for a
variety of NLP tasks.

2 Model distillation

In this work, we used the OpenAl Transformer [5] model as the ‘teacher’ in a model-distillation
setting, with a variety of different ‘student’ networks (see Figure 1).

The OpenAl Transformer model consists of a Byte-Pair Encoded subword embedding layer followed
by 12-layers of “decoder-only transformer with masked self-attention heads” [3], pretrained on the
standard language modelling objective on a corpus of 7000 books. This LM’s final layer outputs
were then coupled with classification modules and the entire model was discriminatively fine-tuned
with an auxiliary language modelling objective, achieving excellent performance on various NLP
tasks.
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Figure 1: Model architecture with distillation across logits

To optimize for speed and memory constraints of industrial deployment, a variety of different models
were trained (a) on the classification task directly; and (b) via distillation [8] of the logit layer output
by the pretrained OpenAl classification model.

To combat label-scarcity and improve distillation quality, we inferred distillation logits for unla-
belled samples in a pseudo-labelling manner [9] [10], while using transfer learning through pre-
trained GloVe embeddings [2].

Student models

A number of common network structures were tested in the student role, specifically:

e atwo-layer BILSTM network [11]
e a wide-but shallow CNN network [12]
e anovel CNN structure, dubbed here ‘BlendCNN’

The BlendCNN architecture was inspired by the ELMo ‘something from every layer’ paradigm, and
aims to be capable of leveraging hierarchical representations for text classification [13].

The BlendCNN model is illustrated in Figure 1, and comprises a number of CNN layers (with
n_channels=100, kernel_width=5, activation=relu), each of which exposes a global pooling
output as a ‘branch’. These branches are then concatenated together and “blended” through a dense
network (width=100), followed by the usual classification logits layer.

Table 1: Parameter counts and inference timing

Total ~ Mobile Sentences

parameters”  footprint®  per second*

2-Layer BiLSTM! 2,406,114 9.4/94 173.01
KimCNN 2,124,824 7.9/8.2 3154.57
OpenAl Transformer 116,534,790 n/a/n/a 11.76
8-layer BlendCNN 3,617,426 9.4/14.1 2392.34
3-layer BlendCNN 2,975,236 8.7/11.6 3676.47

1 BiLSTM and KimCNN model scores were lower

2 Parameter count estimate using a vocab_size of 20000 words, except for OpenAl Trans-
former (which uses a byte-pair encoding embedding)

3 TensorFlowLite executable size in MB, with/without quantisation

4 Timing measurement used n_samples=1000, batch_size=32, based on actual time
taken for K-80 GPU implementations



Table 2: Scores for standard datasets

AG News DBpedia Yahoo Answers

TRAINED ON 100 LABELLED EXAMPLES PER CLASS

TFIDF + SVM 81.9 94.1 54.5

fastText 75.2 91.0 44.9

8-Layer BlendCNN  87.6 94.6 583

OpenAl Transformer 88.7 97.5 70.4
TRAINED BY DISTILLATION' OF OPENAI TRANSFORMER

2-Layer BiLSTM 91.2 97.0 70.5

KimCNN 90.9 97.6 70.4

3-Layer BlendCNN  91.2 /884> 982 /955 71.0 /634
8-Layer BlendCNN  91.2 /899 98.5 /960 70.8 /634

! Distillation training used 100 labelled examples per class, plus 10 times as many
unlabelled examples as pseudo-labelled by the OpenAl LM

? Smaller entries are results where only labelled examples used

" All CNNs use 100-dimensional trainable GloVe embeddings as input

* Adam optimisation was used, with a constant learning rate of 10~3

3 Experiments

Each of the models was trained and tested on the 3 standard datasets described in [14] : AG News,
DBpedia and Yahoo Answers. The experiments had two phases, the first being to evaluate the two
baseline methods (TFIDF+SVM [15] and fastText [16]) along with the student network (without the
benefit of a LM teacher), and the large LM, with a classification ‘head’ trained on the task.

The second phase used the large LM in a ‘teacher’ role, to train the other networks as students via
distillation of the LM classifier logits layer (with a Mean Absolute Error loss function).

4 Results

Referring to Table 2, the 3-Layer and 8-Layer variants of the proposed BlendCNN architecture
achieve the top scores across all studied datasets. However, the performance of the proposed archi-
tecture is lower without the ‘guidance’ of the teacher teacher logits during training, implying the
marked improvement is due to distillation. The additional results given for BlendCNN quantifies
the advantage of adding unlabelled data into the distillation phase of the student model training.

Notably from Table 1, the 3-Layer BlendCNN student has 39x fewer parameters and performs
inference 300 x faster than the OpenAl Transformer which it empirically out-scores.

5 Discussion

For text classifications, mastery may require both high-level concepts gleaned from language un-
derstanding and fine-grained textual features such as key phrases. Similar to the larval-adult form
analogy made in [8], high-capacity models with task-agnostic pre-training may be well-suited for
task mastery on small datasets (which are common in industry). On the other hand, convolutional
student architectures may be more ideal for practical applications on phones and devices by taking
advantage of parallel computation and a significantly reduced memory and size footprints.

Our results suggest that the proposed BlendCNN architecture can efficiently achieve higher scores
on text classification tasks due to the direct leveraging of hierarchical representations, which are
learnable (even in a label-sparse setting) from a strong teaching model. This allows for tasks that
previously could have only been done in the cloud, to now be done at the edge.

Further development of specialized edge-friendly student architectures could similarly surpass
teacher performance if appropriately designed to leverage the knowledge gained from a pretrained,
task-agnostic teacher model whilst optimizing for task-specific constraints. and a significantly re-
duced memory footprint.
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